वालिका विद्यापीट

VIDYA BHAWAN, BALIKA VIDYAPITH

Shakti Utthan Ashram, Lakhisarai-811311(Bihar)

(Affiliated to CBSE up to +2 Level)

Date: 21.01.21

Class: X Subject: Mathematics

Statistics

1. A survey was conducted by a group of students as a part of their environment awareness programme, in which they collected the following data regarding the number of plants in 20 houses in a locality. Find the mean number of plants per house.

Which method did you use for finding the mean, and why?

Sol. We can calculate the mean as:

Number of plants	Number of houses (f,)	Mid-point (x _r)	(f,x,)
0-2	1	1	1 × 1 = 1
2-4	2	3	2 × 3 = 6
4-6	1	5	1 × 5 = 5
6-8	5	7	5 × 7 = 35
8-10	6	9	6 × 9 = 54
10-12	2	11	2 × 11 = 22
12-14	3	13	3 × 13 = 39
Total	Σ f _i = 20		$\sum f_i x_i = 162$

$$\therefore \text{Mean } x = \frac{\sum f_i x_i}{\sum f_i}$$

$$\Rightarrow \text{Mean } x = \frac{162}{20} = 8.1$$

Thus, mean number of plants per house is 8.1.

Since, values of x_i and f_i are small

... We have used the direct method.

2. Consider the following distribution of daily wages of 50 workers of a factory.

Find the mean daily wages of the workers of the factory by using an appropriate method.

Sol. Let the assumed mean, a = 150

Class interval h = 20

$$u_i = \frac{x_i - a}{h} = \frac{x_i - 150}{20}$$

• We have the following table:

Class interval	Class mark (x _i)	Frequency (f,)	$u_i = \frac{x_i - 150}{20}$	f _i u,
100-120	110	12	$\frac{110 - 150}{20} = -2$	12 × (-2) = -2
120-140	130	14	$\frac{130 - 150}{20} = -1$	14 × (-1) = -14
140-160	150	8	$\frac{150 - 150}{20} = 0$	8 × 0 = 0
160-180	170	6	$\frac{170 - 150}{2} = 1$	6×1 = 6
180-200	190	10	$\frac{190 \cdot 150}{2} = 2$	10 × 2 = 20
Total		50		-12

- 3. The following distribution shows the daily pocket allowance of children of a locality. The mean pocket allowance is Rs. 18. Find the missing frequency f.
- **Sol.** Let the assumed mean, a = 16

∴ Class interval
$$h = 2$$

∴ $u_i = \frac{x_i - a}{h} = \frac{x_i - 16}{2}$

Now, we have the following table:

Class interval	Mid value (x,)	Frequency (f,)	$u_i = \frac{x_i - 16}{2}$	f _i u,
11-13	12	7	$\frac{12-16}{2}$ 2	7 × (-2) = -14
13-15	14	6	$\frac{14-16}{2} = -1$	6 × (-1) = -6
15–17	16	9	$\frac{16-16}{2} = 0$	9 × (0) = 0
17-19	18	13	$\frac{18-16}{2} = 1$	13 × 1 = 13
19–21	20	f	$\frac{20-16}{2} = 2$	$f \times 2 = 2f$
21-23	22	5	$\frac{22-16}{2} = 3$	5 × 3 = 15
23-25	24	4	$\frac{24-16}{2}=4$	4 × 4 = 16
		$\sum f_i = (f + 44)$		$\sum f_i u_i = (2f + 24)$

Since $\bar{x} = 18$, a = 16 and h = 2

$$\therefore \overline{x} = a + h \left[\frac{\sum f_i \ u_i}{\sum f_i} \right]$$

$$\Rightarrow 18 = 16 + 2 \left[\frac{2f + 24}{f + 44} \right]$$

$$\Rightarrow 18 - 16 = 2 \left[\frac{2(f + 12)}{f + 44} \right] \Rightarrow 2 = 2 \left[\frac{2(f + 12)}{f + 44} \right]$$

$$\Rightarrow f + 44 = 2(f + 12) = 2f + 24$$

$$\Rightarrow -f = -44 + 24 = -20 \Rightarrow f = 20$$

Thus, the missing frequency is 20.

- **4.** Thirty women were examined in a hospital by a doctor and the number of heart beats per minute were recorded and summarised as follows. Find the mean heart beats per minute for these women, choosing a suitable method.
- **Sol.** Let the assumed mean a = 75.5

$$\begin{array}{l} \text{.. Class interval } h = 3 \\ \text{.. } u_i = \frac{x_i - a}{h} = \frac{x_i - 75.5}{3} \end{array}$$

Now, we have the following table:

Class interval	Class mark (x,)	Frequency (f,)	$u_i = \frac{x_i - 75.5}{3}$	$f_i u_i$
65-68	66.5	2	(66.5 - 75.5) + 3 = -3	2 × (-3) = -6
68-71	69.5	4	(69.5 - 75.5) + 3 = -2	4 × (-2) = -8
71-74	72.5	3	(72.5 - 75.5) + 3 = -1	3 × (-1) = -3
74-77	75.5	8	(75.5 - 75.5) + 3 = 0	8 × 0 = 0
77-80	78.5	7	(78.5 - 75.5) + 3 = 1	7 × 1 = 7
80-83	81.5	4	(81.5 - 75.5) + 3 = 2	4 × 2 = 8
83-86	84.5	2	(84.5 - 75.5) + 3 = 3	2 × 3 = 6
Total		$\sum f_i = 30$		$\sum f_i u_i = 4$

$$\therefore \overline{x} = a + h \left[\frac{\sum f_i u_i}{\sum f_i} \right]$$

$$= 75.5 + 3 \times \frac{4}{30}$$

$$= 75.5 + \frac{4}{10} = \frac{755}{10} + \frac{4}{10}$$

$$= \frac{759}{10} = 75.9$$

Thus, the mean heart beat per minute is 75.9.